Soyuz 7 Return Samples: Assessment of Air Quality Aboard the International Space Station The toxicological assessments of one grab sample canister (GSC), 6 dual sorbent tubes (DSTs), and 20 formaldehyde badges returned aboard Soyuz 7 are reported. Analytical methods have not changed from earlier reports. Surrogate standard recoveries from the GSC were 84-89%. The recoveries of the less volatile surrogates from the DSTs were 87 to 112%; however, ¹³C-acetone was only recovered at 53-59%. Formaldehyde recoveries from 2 lab controls were 87 and 95%; trip controls were not returned to ground. The two general criteria used to assess air quality are the total-non-methane-volatile organic hydrocarbons (NMVOCs) and the total T-value (minus the CO₂ and formaldehyde contributions). Control of atmospheric alcohols is important to the water recovery system engineers, hence total alcohols (including acetone) are also shown for each sample. Because formaldehyde is quantified from sorbent badges, its concentration is also listed separately. These four indices of air quality are summarized below: | Sample & | <u>Date</u> | NMVOCs | T Value ^a | Alcohols | Formaldehyde | |-----------------|-------------|-----------------|----------------------|------------|---------------| | Location | | (mg/m^3) | (units) | (mg/m^3) | $(\mu g/m^3)$ | | Lab/For. | 12/15/03 | ns ^b | ns | ns | 40 | | SM/For. | 12/15/03 | ns | ns | ns | 30 | | Lab/For. | 12/29/03 | ns | ns | ns | 46 | | SM/For. | 12/29/03 | ns | ns | ns | 40 | | Lab/For. | 1/27/04 | ns | ns | ns | 44 | | SM/For. | 1/27/04 | ns | ns | ns | 34 | | Lab DST | 3/3/04 | 7 | 0.87 | 4 | ns | | SM DST | 3/3/04 | 8 | 0.91 | 5 | ns | | SM GSC | 3/18/04° | 11 | 0.61 | 6 | ns | | SM DST | 3/18/04° | 10 | 0.91 | 7 | ns | | Lab DST/For | 3/22/04 | 9 | 0.89 | 6 | 50 | | SM/For | 3/22/04 | ns | | | 44 | | Lab DST/For | 4/19/04 | 9 | 0.75 | 7 | 42 | | SM DST/For. | 4/19/04 | 10 | 0.91 | 7 | 30 | | Acceptable Guid | deline: | <25 | <1 | <5 | 50 | ^a Formaldehyde and CO2 not included in T calculation. All formaldehyde concentrations were within the long term SMAC. The Lab samples continue to show somewhat higher values than the SM samples. The T values and NMVOCs are within acceptable guidelines; however, the total alcohol levels slightly exceed the guideline of 5 mg/m³. The GSC sample taken several days after the Elektron anomaly showed above nominal concentrations of aromatic compounds (when compared to analyses from recent flights) as follows: toluene, 0.12 mg/m³; xylenes, 0.30 mg/m³; and ethylbenzene, 0.14 mg/m³. Simultaneous sampling with the DST gave concentrations about 13-20 % below these values. Although the air samples are sparse, there are no indications that air quality has degraded in the ISS. For all but the most volatile compounds, the DSTs provide adequate air samples in a much smaller package than the GSCs. ## **Enclosures** Table 1: Analytical Concentrations of DST and GSC Samples Table 2: T-Value Calculations of DST and GSC Samples b ns = no sample available ^c Taken 4-6 days after problems with the Elektron oxygen generator TABLE 1 ANALYTICAL RESULTS OF COMBINED GSC and DUAL SORBENT AIR SAMPLES RETURNED ON SOYUZ 7S | | | | | | | | · | |--|--------------------------|--------------------------|------------------------|------------------------|--------------------|--------------------|--------------------| | İ | | | | CONCENTRATION | | | | | CHEMICAL CONTAMINANT | AA03686 | 4.402/07 | 1 1 22 5 2 | (mg/m3) | | | | | CHEMICAL CONTAMINANT | LAB | AA03687
SM | AA03658
SM ELEKTRON | AA03688
SM ELEKTRON | AA03689
LAB | AA03690
LAB | AA03691 | | | S/N 1001 | S/N 1008 | SN 1036 | S/N 1002 | S/N 1007 | S/N 1004 | SM
S/N 1005 | | | 3/3/04@ | 3/3/04@ | 3/18/2004 | 3/18/2004 | 3/22/04@ | 4/19/04@ | 4/19/04@ | | | 10:15GMT
(DST SAMPLE) | 10:30GMT
(DST SAMPLE) | (CEC CALATTER) | (DCT CALADY TO | 10:00GMT | 09:16GMT | 09:30GMT | | TARGET COMPOUNDS (TO-14/POLAR)** | | (DSI SAMPLE) | (GSC SAMPLE) | (DST SAMPLE) | (DST SAMPLE) | (DST SAMPLE) | (DST SAMPLE) | | FREON 12 | TRACE | CHLOROMETHANE
FREON 114 | TRACE < 0.054 | TRACE < 0.054 | TRACE | TRACE | TRACE | TRACE | TRACE | | METHANOL* | 0.3 | 0.4 | <0.05
0.24 | <0.054
0.3 | < 0.054
0.3 | < 0.045
0.4 | < 0.055 | | ACETALDEHYDE | 0.22 | 0.23 | 0.20 | 0.24 | 0.19 | 0.17 | 0.16 | | VINYL CHLORIDE | < 0.054 | < 0.054 | <0.05 | < 0.054 | < 0.054 | < 0.045 | < 0.055 | | BROMOMETHANE
ETHANOL* | < 0.054 | < 0.054
4 | <0.05
5.5 | < 0.054 | < 0.054
5 | < 0.045 | < 0.055 | | CHLOROETHANE | < 0.054 | < 0.054 | <0.05 | < 0.054 | < 0.054 | < 0.045 | < 0.055 | | ACETONITRILE | TRACE | PROPENAL
ACETONE | TRACE
0.16 | TRACE
0.19 | <0.02 | TRACE | TRACE | TRACE | TRACE | | PROPANAL | TRACE | TRACE | 0.21
TRACE | 0.22
TRACE | 0.20
TRACE | 0.17
TRACE | 0.22
TRACE | | 2-PROPANOL | 0.12 | 0.13 | 0.14 | 0.13 | 0.15 | 0.13 | 0.13 | | FREON 11 | TRACE | FURAN
ACRYLONITRILE | < 0.054
TRACE | < 0.054
TRACE | <0.05
TRACE | < 0.054 | < 0.054 | < 0.045 | < 0.055 | | PENTANE | < 0.054 | TRACE | <0.05 | TRACE
TRACE | TRACE
TRACE | TRACE < 0.045 | TRACE
TRACE | | 2-METHYL-2-PROPANOL | TRACE | TRACE | <0.05 | TRACE | TRACE | TRACE | TRACE | | METHYL ACETATE | TRACE | TRACE | <0.05 | TRACE | TRACE | < 0.045 | < 0.055 | | 1,1-DICHLOROETHENE
DICHLOROMETHANE | < 0.054
0.07 | < 0.054
0.07 | <0.05
0.08 | < 0.054
0.08 | < 0.054 | < 0.045 | < 0.055 | | 3-CHLOROPROPENE | < 0.054 | < 0.054 | <0.05 | < 0.054 | < 0.054 | 0.08
< 0.045 | 0.08
< 0.055 | | FREON 113 | < 0.054 | < 0.054 | <0.05 | < 0.054 | < 0.054 | < 0.045 | < 0.055 | | N-PROPANOL
I,1-DICHLOROETHANE | TRACE | BUTANAL | < 0.054
TRACE | < 0.054
TRACE | <0.05
TRACE | < 0.054
TRACE | < 0.054
TRACE | < 0.045
TRACE | < 0.055 | | 2-BUTANONE | TRACE | TRACE | TRACE | TRACE | TRACE | TRACE | TRACE
TRACE | | CIS-1,2-DICHLOROETHENE | < 0.054 | < 0.054 | <0.05 | < 0.054 | < 0.054 | < 0.045 | < 0.055 | | 2-METHYLFURAN
ETHYL ACETATE | < 0.054
TRACE | < 0.054
0.06 | <0.05 | < 0.054 | < 0.054 | < 0.045 | < 0.055 | | HEXANE | < 0.054 | < 0.054 | TRACE
<0.05 | TRACE < 0.054 | TRACE < 0.054 | TRACE < 0.045 | TRACE < 0.055 | | CHLOROFORM | < 0.054 | < 0.054 | <0.05 | < 0.054 | < 0.054 | < 0.045 | < 0.055 | | 2-BUTENAL
1,2-DICHLOROETHANE | < 0.054
TRACE | < 0.054 | <0.05 | < 0.054 | < 0.054 | < 0.045 | < 0.055 | | 1,1,1-TRICHLOROETHANE | < 0.054 | TRACE
< 0.054 | TRACE
<0.05 | TRACE < 0.054 | TRACE
< 0.054 | TRACE < 0.045 | TRACE
< 0.055 | | N-BUTANOL | 0.08 | 0.10 | 0.08 | 0.10 | 0.10 | 0.10 | 0.10 | | BENZENE | TRACE | TETRACHLOROMETHANE
2-PENTANONE | < 0.054
< 0.054 | < 0.054
< 0.054 | <0.05
<0.05 | < 0.054
< 0.054 | < 0.054
< 0.054 | < 0.045
< 0.045 | < 0.055 | | PENTANAL | < 0.054 | < 0.054 | <0.05 | < 0.054 | < 0.054 | < 0.045 | < 0.055
< 0.055 | | 1,2-DICHLOROPROPANE | < 0.054 | < 0.054 | <0.05 | < 0.054 | < 0.054 | < 0.045 | < 0.055 | | 1,4-DIOXANE
TRICHLOROETHENE | < 0.054
< 0.054 | TRACE < 0.054 | <0.05 | TRACE | TRACE | TRACE | TRACE | | 2,5-DIMETHYLFURAN | < 0.054 | < 0.054 | <0.05
<0.05 | < 0.054
< 0.054 | < 0.054
< 0.054 | < 0.045
< 0.045 | < 0.055
< 0.055 | | 4-METHYL-2-PENTANONE | < 0.054 | TRACE | TRACE | TRACE | < 0.054 | < 0.045 | TRACE | | CIS-1,3-DICHLOROPROPENE
2-PENTENAL | < 0.054 | < 0.054 | <0.05 | < 0.054 | < 0.054 | < 0.045 | < 0.055 | | TRANS-1,3-DICHLOROPROPENE | < 0.054
< 0.054 | < 0.054
< 0.054 | <0.05
<0.05 | < 0.054
< 0.054 | < 0.054
< 0.054 | < 0.045
< 0.045 | < 0.055
< 0.055 | | 1,1,2-TRICHLOROETHANE | < 0.054 | < 0.054 | <0.05 | < 0.054 | < 0.054 | < 0.045 | < 0.055 | | TOLUENE | TRACE | TRACE | 0.12 | 0.15 | 0.09 | 0.05 | TRACE | | HEXANAL
MESITYL OXIDE | TRACE < 0.054 | TRACE < 0.054 | TRACE
<0.05 | TRACE < 0.054 | TRACE | TRACE | TRACE | | 1,2-DIBROMOETHANE | < 0.054 | < 0.054 | <0.05 | < 0.054 | < 0.054
< 0.054 | < 0.045
< 0.045 | < 0.055
< 0.055 | | BUTYL ACETATE | TRACE | TRACE | 0.06 | 0.07 | TRACE | TRACE | TRACE | | TETRACHLOROETHENE
CHLOROBENZENE | < 0.054 | < 0.054 | <0.05 | < 0.054 | < 0.054 | < 0.045 | < 0.055 | | ETHYLBENZENE | < 0.054
TRACE | < 0.054
TRACE | <0.05
0.14 | < 0.054
0.17 | < 0.054
0.07 | < 0.045
TRACE | < 0.055
TRACE | | META+PARA-XYLENES | TRACE | 0.06 | 0.16 | 0.20 | 0.14 | 0.06 | .0.07 | | 2-HEPTANONE | < 0.054 | TRACE | <0.05 | TRACE | < 0.054 | < 0.045 | TRACE | | CYCLOHEXANONE
HEPTANAL | TRACE
TRACE | TRACE
TRACE | TRACE | TRACE
TRACE | TRACE | TRACE | TRACE | | STYRENE | < 0.054 | < 0.054 | <0.05 | < 0.054 | < 0.054
< 0.054 | < 0.045
< 0.045 | TRACE
< 0.055 | | 1,1,2,2-TETRACHLOROETHANE | < 0.054 | < 0.054 | <0.05 | < 0.054 | < 0.054 | < 0.045 | < 0.055 | | ORTHO-XYLENE | 0.09 | 0.12 | 0.14 | 0.16 | 0.14 | 0.09 | 0.10 | | 1,3,5-TRIMETHYLBENZENE
1,2,4-TRIMETHYLBENZENE | < 0.054
< 0.054 | < 0.054
< 0.054 | <0.05
TRACE | TRACE
TRACE | < 0.054
TRACE | < 0.045
< 0.045 | < 0.055 | | 1,3-DICHLOROBENZENE | < 0.054 | < 0.054 | <0.05 | < 0.054 | < 0.054 | < 0.045
< 0.045 | < 0.055
< 0.055 | | 1,4-DICHLOROBENZENE | < 0.054 | < 0.054 | <0.05 | < 0.054 | < 0.054 | < 0.045 | < 0.055 | | 1,2-DICHLOROBENZENE
1,2,4-TRICHLOROBENZENE | < 0.054 | < 0.054
< 0.054 | <0.05 | < 0.054 | < 0.054 | < 0.045 | < 0.055 | | HEXACHLORO-1,3-BUTADIENE | < 0.054
< 0.082 | < 0.081 | <0.05
<0.05 | < 0.054
< 0.081 | < 0.054
< 0.081 | < 0.045
< 0.068 | < 0.055
< 0.082 | | | | | | | | | 3 0.002 | ## TABLE 1 ANALYTICAL RESULTS OF COMBINED GSC and DUAL SORBENT AIR SAMPLES RETURNED ON SOYUZ 7S | | | | | CONCENTRATION
(mg/m3) | | | | |--|---|--|--|---|--|--|---| | CHEMICAL CONTAMINANT | AA03686
LAB
S/N 1001
3/3/04@
10:15GMT | AA03687
SM
S/N 1008
3/3/04@
10:30GMT | AA03658
SM ELEKTRON
SN 1036
3/18/2004 | AA03688
SM ELEKTRON
S/N 1002
3/18/2004 | AA03689
LAB
S/N 1007
3/22/04@
10:00GMT | AA03690
LAB
S/N 1004
4/19/04@
09:16GMT | AA03691
SM
S/N 1005
4/19/04@
09:30GMT | | | (DST SAMPLE) | (DST SAMPLE) | (GSC SAMPLE) | (DST SAMPLE) | (DST SAMPLE) | (DST SAMPLE) | (DST SAMPLE) | | | | | | | | | | | ARGET COMPOUNDS (TOXIC) | 0.054 | < 0.054 | | 0.054 | < 0.054 | < 0.045 | < 0.055 | | 3-BUTADIENE | < 0.054 | | <0.05 | < 0.054 | | | | | THYLENE OXIDE | < 0.054
TRACE | < 0.054
TRACE | <0.05 | < 0.054
TRACE | TRACE
TRACE | < 0.045
TRACE | < 0.055
TRACE | | ARBON DISULFIDE | | TRACE | TRACE | TRACE | TRACE | TRACE | TRACE | | METHYL-2-PROPENAL | < 0.054 | TRACE | <0.05 | TRACE | TRACE | TRACE | TRACE | | BUTEN-2-ONE | TRACE
< 0.054 | < 0.054 | <0.05
<0.05 | < 0.054 | < 0.054 | < 0.045 | < 0.055 | | ETHOXYETHANOL | < 0.054
< 0.054 | < 0.054 | <0.05
<0.05 | < 0.054
< 0.054 | < 0.054 | < 0.045 | < 0.055 | | METHYLDISULFIDE TAMETHYLCYCLOTETRASILOXANE | < 0.054
0.43 | <0.034
0.50 | <0.05 | < 0.054
0.45 | 0.46 | 0.41 | 0.46 | | TAMETHILC ICLOTETRASILOXANE | 0.43 | | 1.1 | 0,43 | 0.40 | [| 0.40 | | ON-TARGET COMPOUNDS** | | | | | | | | | ARBONYL SULFIDE | 0.12 | 0.15 | 0.004 | 0.13 | 0.16 | 0.12 | 0.13 | | RIMETHYLSILANOL | 0.074 | 0.077 | 0.081 | 0.069 | 0.096 | 0.092 | 0.089 | | METHYL HEXANE | 0.010 | 0.014 | 0.008 | 0.016 | 0.008 | 0.006 | 0.020 | | 3-DIMETHYLPENTANE | 0.004 | 0.005 | 0.004 | 0.004 | 0.004 | 0.003 | 0.003 | | METHYLHEXANE | 0.007 | 0.009 | 0.008 | 0.008 | 0.007 | 0.005 | 0.006 | | HEPTANE | 0.007 | 0.008 | 0.004 | 0.006 | 0.007 | 0.005 | 0.006 | | EXAMETHYLCYCLOTRISILOXANE | 0.66 | 0.63 | 2.0 | 0.63 | 0.60 | 0.55 | 0.77 | | NZALDEHYDE | 0.016 | 0.025 | 0.024 | 0.017 | 0.019 | 0.013 | 0.017 | | MONENE | 0.049 | 0.062 | 0.039 | 0.045 | 0.046 | 0.040 | 0.046 | | CAMETHYLCYCLOPENTASILOXANE | 0.14 | 0.26 | 0.27 | 0.14 - | 0.17 | 0.18 | 0.20 | | OTAL ALCOHOLS PLUS ACETONE | | 5 | 6.2 | 7 | 6 | 7 | 7 | | TAL ALCOHOLS PLUS ACETONE | 4 | | 0.2 | | 0 | | | | RGET COMPOUNDS (GC)*** | | | | | | | 7 | | ARBON MONOXIDE | NR | NR | <1.3 | NR | NR | NR | (NR | | ETHANE | NR | NR | 9.8 | NR | NR | NR | , i NR | | DROGEN | NR NR | NR | 0.91 | NR | NR | NR | NR | | ARBON DIOXIDE | NR | NR NR | 9000 | NR. | NR | NR | ` NR | | | | | | | | | | | TAL CONCENTRATION | 7 | 8 | 11.1 | 10 | 9 | 9 | , 10 | <: Values are less than the laboratory report detection limit.</p> TRACE: Amount detected is sufficient for compound identification only. Calculations are based on one-half of the laboratory report detection limit (0.05 mg/m3 for VOCs; and 0.02 mg/m3 for propenal.) NR: The DSTs are not designed to adsorb these compounds NOTE: High levels (above 1.5 ppm) of methanol ethanol, acetone, isoprpoanol and 2-butanone are routinely reported based on calibrated GC-FID measurements. ^{*}NOTE: In DST samples methanol and ethanol concentrations were adjusted for 25% average recovery from positive DST controls ^{**}NOTE: Non-target compounds are estimated using historical reference ("B Value") response factors. ^{***}Measurements are calibrated by multi-point initial calibration and verified by mid-point continuing calibration ## TABLE 2 ANALYTICAL RESULTS OF COMBINED GSC and DUAL SORBENT AIR SAMPLES RETURNED ON SOYUZ 7S | | | | т-V | ALUE (180-DAY SMA) | Cs) | | | |--|---|---|--|---|--|--|---| | CHEMICAL CONTAMINANT | AA03686
LAB
S/N 1001
3/3/04@
10:15GMT
(DST SAMPLE) | AA03687
SM
SN 1008
3/3/04@
10:30GMT
(DST SAMPLE) | AA03658
SM ELEKTRON
SN 1036
3/18/2004
(GSC SAMPLE) | AA03688
SM ELEKTRON
S/N 1002
3/18/2004
(DST SAMPLE) | AA03689
LAB
S/N 1007
3/22/04@
10:00GMT
(DST SAMPLE) | AA03690
LAB
S/N 1004
4/19/04@
09:16GMT
(DST SAMPLE) | AA03691
SM
S/N 1005
4/19/04@
09:30GMT
(DST SAMPLE) | | TARGET COMPOUNDS (TO-14/POLAR)*** | | | | | (====================================== | 1 (2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | (DOT BARREDE) | | FREON 12 | 0.00006 | 0.00006 | 0.00005 | 0.00006 | 0.00006 | 0.00005 | 0.00006 | | CHLOROMETHANE | 0.00066 | 0.00066 | 0.00061 | 0.00066 | 0.00066 | 0.00055 | 0.00067 | | FREON 114
METHANOL* | ND
0.04 | ND | ND | ND | ND | ND | ND | | ACETALDEHYDE | 0.05580 | 0.04
0.05650 | 0.02620
0.04997 | 0.04
0.06033 | 0.04 | 0.04 | 0.04 | | VINYL CHLORIDE | ND | ND ND | 0.04997
ND | ND | 0.04795
ND | 0.04285
ND | 0.04103
ND | | BROMOMETHANE | ND | ND | ND | ND ND | ND | ND ND | ND ND | | ETHANOL* | 0.002 | 0.002 | 0.00273 | 0.003 | 0.002 | 0.003 | 0.003 | | CHLOROETHANE | ND ND | ND | ND | ND | ND | ND | - ND | | ACETONITRILE
PROPENAL | 0.00403
0.36667 | 0.00403 | 0.00373 | 0.00403 | 0.00403 | 0.00336 | .0.00410 | | ACETONE | 0.00306 | 0.36667
0.00371 | ND
0.00397 | 0.36667
0.00427 | 0.36667
0.00379 | 0.30000
0.00322 | 0.36667 | | PROPANAL | 0.00750 | 0.00750 | 0.00694 | 0.00750 | 0.00379 | 0.00522 | 0.00415
0.00764 | | 2-PROPANOL | 0.00079 | 0.00086 | 0.00094 | 0.00084 | 0.00099 | 0.00084 | 0.00083 | | FREON 11 | 0.00003 | 0.00003 | 0.00003 | 0.00003 | 0.00003 | 0.00003 | 0.00003 | | FURAN | ND | ACRYLONITRILE | 0.00964 | 0.00964 | 0.00893 | 0.00964 | 0.00964 | 0.00804 | 0.00982 | | PENTANE
2-METHYL-2-PROPANOL | ND
0.00023 | 0.00005 | ND
ND | 0.00005 | 0.00005 | ND
0.00010 | 0.00005 | | METHYL-Z-PROPANOL METHYL ACETATE | 0.00023
0.00023 | 0.00023
0.00023 | ND
ND | 0.00023
0.00023 | 0.00023
0.00023 | 0.00019
ND | 0.00023
ND | | 1,1-DICHLOROETHENE | ND | ND | ND | 0.00023
ND | ND | ND
ND | ND
ND | | DICHLOROMETHANE | 0.00679 | 0.00721 | 0.00757 | 0.00828 | 0.00890 | 0.00830 | 0.00826 | | 3-CHLOROPROPENE | ND | FREON 113 | ND | N-PROPANOL
1.1-DICHLOROETHANE | 0.00028
ND | 0.00028
ND | 0.00026 | 0.00028 | 0.00028 | 0.00023 | 0.00028 | | BUTANAL | 0.00614 | 0.00614 | ND
0.00568 | ND
0.00614 | ND
0.00614 | ND
0.00511 | ND
0.00625 | | 2-BUTANONE | 0.00090 | 0.00090 | 0.00083 | 0.00090 | 0.00090 | 0.00075 | 0.00023 | | CIS-1,2-DICHLOROETHENE | ND | -METHYLFURAN | ND | ETHYL ACETATE HEXANE | 0.00015 | 0.00035 | 0.00014 | 0.00015 | 0.00015 | 0.00013 | 0.00015 | | CHLOROFORM | ND
ND | ND
ND | ND
ND | ND
ND | ND ND | ND
ND | ND
ND | | -BUTENAL | ND | ND | ND | ND ND | ND | ND | ND
ND | | ,2-DICHLOROETHANE | 0.02700 | 0.02700 | 0.02500 | 0.02700 | 0.02700 | 0.02250 | 0.02750 | | ,1,1-TRICHLOROETHANE | ND | ND | ND | ND | ND | ND | : ND | | N-BUTANOL
BENZENE | 0.00205 | 0.00260 | 0.00209 | 0.00243 | 0.00247 | 0.00238 | 0.00247 | | ETRACHLOROMETHANE | 0.13500
ND | 0.13500
ND | 0.12500
ND | 0.13500
ND | 0.13500
ND | 0.11250 | 0.13750 | | -PENTANONE | ND ND | ND
ND | ND
ND | ND
ND | ND ND | ND
ND | ND
ND | | ENTANAL | ND | ,2-DICHLOROPROPANE | ND | ,4-DIOXANE | ND | 0.00038 | ND | 0.00038 | 0.00038 | 0.00031 | 0.00038 | | RICHLOROETHENE
5-DIMETHYLFURAN | ND NT | ND ND | ND | ND. | ND | ND | ND | | -METHYL-2-PENTANONE | ND
ND | ND
0.00019 | 0.00018 | ND
0.00019 | ND
ND | ND
ND | ND
0.00020 | | IS-1,3-DICHLOROPROPENE | ND ND | | -PENTENAL | ND | RANS-1,3-DICHLOROPROPENE | ND | ND | ND ND | ND | ND | ND | ND | | 1,2-TRICHLOROETHANE OLUENE | ND
0.00045 | ND
0.00046 | ND | ND | ND
0.00155 | ND
0.00076 | ND | | EXANAL | 0.0043 | 0.00045
0.00443 | 0.00204,
0.00410 | 0.00253
0.00443 | 0.00155
0.00443 | 0.00076
0.00369 | 0.00046 | | ESITYL OXIDE | ND | ND | 0.00410
ND | 0.00443
ND | 0.00443
ND | 0.00369
ND | -0.00451
ND | | 2-DIBROMOETHANE | ND | ND ND | ND | ND | ND | ND ND | ND | | UTYL ACETATE | 0.00014 | 0.00014 | 0.00030 | 0.00035 | 0.00014 | 0.00012 | 0.00014 | | ETRACHLOROETHENE HI ODORENZENE | ND | HLOROBENZENE
THYLBENZENE | ND
0.00054 | ND
0.00054 | ND
0.00281 | ND
0.00341 | ND
0.00148 | ND 0.00045 | ND
0.00055 | | ETA+PARA-XYLENES | 0.00034 | 0.00034 | 0.00281 | 0.00089 | 0.00148 | 0.00045
0.00029 | 0.00055
0.00032 | | HEPTANONE | ND ND | 0.00117 | ND | 0.00117 | ND ND | ND | 0.0032 | | YCLOHEXANONE | 0.00045 | 0.00045 | 8.00042 | 0.00045 | 0.00045 | 0.00038 | 0.00046 | | EPTANAL | 0.00386 | 0.00386 | 0.00357 | 0.00386 | _ ND | ND | 0.00393 | | TYRENE | ND | ND | ND . | ND | ND | ND | - ND | | 1.2,2-TETRACHLOROETHANE
RTHO-XYLENE | ND
0.00041 | ND
0.00054 | ND
0.00063 | ND
0.00075 | ND
0.00063 | ND
0.00041 | ND
0.00047 | | 3,5-TRIMETHYLBENZENE | ND | 0.00054
ND | 0.00063
ND | 0.0075 | 0.00063
ND | 0.00041
ND | 0.00047
: ND | | 2,4-TRIMETHYLBENZENE | ND | ND | 0.00167 | 0.00180 | 0.00180 | ND | ND | | | 777 | | ND | ND | ND | ND | ND | | 3-DICHLOROBENZENE | ND | ND | | | | | ND | | 4-DICHLOROBENZENE | ND | | | | | | | | | * TABLE 2 ANALYTICAL RESULTS OF COMBINED GSC and DUAL SORBENT AIR SAMPLES RETURNED ON SOYUZ 7S | | T-VALUE (180-DAY SMACs) | | | | | | | | | |---------------------------------------|---|--|--|---|--|--|---|--|--| | CHEMICAL CONTAMINANT | AA03686
LAB
S/N 1001
3/3/04@
10:15GMT
(DST SAMPLE) | AA03687
SM
S/N 1008
3/3/04@
10:30GMT
(DST SAMPLE) | AA03658
SM ELEKTRON
SN 1036
3/18/2004
(GSC SAMPLE) | AA03688 SM ELEKTRON S/N 1002 3/18/2004 (DST SAMPLE) | AA03689
LAB
S/N 1007
3/22/04@
10:00GMT
(DST SAMPLE) | AA03690
LAB
S/N 1004
4/19/04@
09:16GMT
(DST SAMPLE) | AA03691
SM
S/N 1005
4/19/04@
09:30GMT
(DST SAMPI | | | | ARGET COMPOUNDS (TOXIC) | | | | | | | | | | | 3-BUTADIENE | ND | ND | 1 170 | 175 | 175 | | | | | | HYLENE OXIDE | ND
ND | ND ND | ND | ND | ND
0.00150 | ND | , ND | | | | ARBON DISULFIDE | 0.00169 | 0.00169 | ND
0.00156 | ND
0.00160 | 0.00150 | ND | : ND | | | | METHYL-2-PROPENAL | 0.00169
ND | 0.00169 | 0.00156 | 0.00169
0.01588 | 0.00169
0.01588 | 0.00141 | 0.00172 | | | | BUTEN-2-ONE | 0.06279 | 0.06279 | ND
NE | | | 0.01324 | 0.01618 | | | | METHYLDISULFIDE | 0.06279
ND | 0.06279
ND | ND NTD | 0.06279 | 0.06279 | 0.05233 | 0.06395 | | | | ETHOXYETHANOL | ND
ND | ND ND | ND | ND | ND
ND | ND | ND | | | | TAMETHYLCYCLOTETRASILOXANE | 0.036 | 0.04204 | ND
0.09447 | ND
0.03717 | 0.03835 | ND
0.03415 | ND
0.03803 | | | | ON-TARGET COMPOUNDS** RBONYL SULFIDE | 0.01009 | 0.01240 | 0.00030 | 0.01082 | 0.01349 | 0.00972 | 0.01111 | | | | IMETHYLSILANOL | 0.00199 | 0.00208 | 0.00220 | 0.00187 | 0.00259 | 0.00248 | 0.00239 | | | | METHYL HEXANE | 0.00033 | 0.00049 | 0.00028 | 0.00057 | 0.00026 | 0.00019 | 0.00068 | | | | -DIMETHYLPENTANE | 0.00002 | 0.00003 | 0.00002 | 0.00014 | 0.00002 | 0.00001 | 0.00002 | | | | METHYLHEXANE | 0,00024 | 0.00031 | 0.00027 | 0.00026 | 0.00026 | 0.00016 | • 0.00021 | | | | HEPTANE | 0.00003 | 0.00004 | 0.00002 | 0.00021 | 0.00003 | 0.00002 | 0.00003 | | | | XAMETHYLCYCLOTRISILOXANE | 0.07340 | 0.07039 | 0.22380 | 0.07007 | 0.06686 | 0.06119 | 0.08521 | | | | NZALDEHYDE | 0.00009 | 0.00014 | 0.00014 | 0.00010 | 0.00011 | 0.00008 | 0.00010 | | | | MONENE | 0.00009 | 0.00011 | 0.00007 | 0.00008 | 0.00008 | 0.00007 | 0.00008 | | | | CAMETHYLCYCLOPENTASILOXANE | 0.00902 | 0.01735 | 0.01809 | 0.00921 | 0.01113 | 0.01219 | 0.01350 | | | | RGET COMPOUNDS (GC)*** | | | | | " | | | | | | RBON MONOXIDE | NR | NR | 0.00000 | NR | NR | NR | NR | | | | ETHANE | NR | NR. | 0.00259 | NR | NR | NR |) NR | | | | | NR | NR | 0.00267 | NR | NR | NR | NR | | | | DROGEN | | NR | 0.69214 | NR | NR | NR | | | | ND: Value is less than the laboratory report detection limit. Note: Number of decimal places in T-Values do not represent significant figures of measurements. NR: The DSTs are not designed to adsorb these compounds ***Measurements are calibrated by multi-point initial calibration and verified by mid-point continuing calibration.